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Abstract 

The United States is very dependant upon the use of space.  Any threat to our 

ability to use it as desired deserves significant study.  One such asymmetric threat is 

through the use of a microsatellite.  The feasibility of using a microsatellite to accomplish 

an orbital rendezvous with a non-cooperative target is being evaluated.  This study 

focused on identifying and further exploring the technical challenges involved in 

achieving a non-cooperative rendezvous. 

A systems engineering analysis and review of past research quickly led to a 

concentration on the guidance, navigation, and control (GN&C) elements of the 

microsatellite operation.  While both the control laws and orbit determination have been 

previously evaluated as feasible, the integration of the two remained in question.  This 

research first validated past efforts prior to exploring the integration.  Impulsive and 

continuous thrust control methods, and linear and nonlinear estimator filters were all 

candidate components to a potential system solution. 

A simple yet robust solution could not be found to meet reasonable rendezvous 

criteria, using essentially off-the-shelf technology and algorithms.   Results reveal a 

simple linear filter is a misapplication and will not at all work.  A nonlinear filter coupled 

with either a continuous or impulsive thrust controller was found to get somewhat close, 

but never close enough to attach to the target satellite.  Successful GN&C subsystem 
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integration could only be achieved for a very simple case ignoring orbit perturbations 

such as the earth’s oblateness.   A top-level system architecture for a non-cooperative 

rendezvous microsatellite has been developed.  The technical complexity, however, 

requires more complex algorithms to solve the rendezvous problem. 
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SYSTEMS-LEVEL FEASIBILITY ANALYSIS OF A MICROSATELLITE 
RENDEZVOUS WITH NON-COOPERATIVE TARGETS 

 
 

I.  Introduction 

Background 

We are entering, or perhaps have already entered, an era in which the use 
of space will exert such profound influence on human affairs that no 
nation will be fully able to control its own destiny without significant 
space capabilities.  
 

–General Robert T. Herres (USAF) 
Vice Chairman of the JCS, 1988 

 

Although the quote above may seem a bit dated, we are just now beginning to 

fully understand the ramifications of such statements.  The United States has for some 

time led the world in the use of space-based resources for military as well as civilian 

operations.  Our large competitive advantage is now being challenged, however.  Gen 

Lance Lord, Commander of Air Force Space Command (AFSPC) discussed this issue 

with space industry leaders in November 2003.  The General stated that, “Our adversaries 

– and even future adversaries – know the value we place on space to enhance, improve 

and transform all our operations.  They will increasingly try to deny us the asymmetric 

advantage that space provides” (Wilson, 2004). 

As the potential benefits of space operations are more broadly understood, more 

capabilities are being transferred to the ultimate high ground.  In an interview last 

October with Inside the Pentagon, Lt Gen Dan Leaf, Vice Commander of AFSPC, 
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described just how dependent the United States is on our space assets.  He chose to depict 

our space capabilities as “woven inextricably through our overall military capabilities” 

(Grossman, 2003a).  We have indeed moved much beyond the first space war of Desert 

Storm in 1991 when GPS, DSP, and exclusive national systems were used to support only 

selected air and ground operations.   

Given our critical dependence upon and potential threat to our space assets, any 

focused research in this arena may prove valuable to space policy makers, developers and 

operators alike.  Gen Lord declared that, “It is our duty to preserve, protect and defend 

the high ground of space and we must have the ways and means of detecting, 

characterizing, reporting and responding to attacks in the medium of space” (Wilson, 

2004).  This research effort is aimed at contributing to characterizing a specific potential 

space threat. 

Space Control 

The concept of space control involves both offensive and defensive activities to 

ensure a desired level of advantage.  From the very indiscriminate nuclear systems to the 

laser-focused Star Wars initiative, history provides a colorful review of space control 

attempts.  Only one select example will be quickly discussed here.  Current space control 

doctrine will be presented next.  Finally, the above will be used to put this research into 

the larger context of current Air Force counterspace activities.  This, in itself, is a systems 

engineering activity as a key step in the evaluation of any potential system is to view both 

internal and external environments. 
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Traditionally, an Anti-Satellite (ASAT) system has been viewed as having the 

purpose of negating the functional mission of the target space asset.  This can be 

accomplished by various methods.  Directing energy on the satellite from a ground or 

space-based illuminating device; placing co-orbiting “mines” in space adjacent to the 

target; direct ascent; achieving a co-orbit with the target satellite and “catching up” to it; 

and launching a device from a high-altitude aircraft have all been attempted (Johnson-

Freese, 2000). 

The United States has undergone the most extensive ASAT development activity.  

Project SAINT (SAtellite INTerceptor) began in the late 1950’s.  The program 

extensively covered a wide range of technologies for interception, inspection, and 

destruction of enemy spacecraft (SAINT, 2003).  The Concept of Operations, or 

CONOPS, entailed rendezvous with a target satellite, inspection with television cameras, 

and then disabling it somehow.  Project SAINT was restructured several times and 

eventually canceled in 1962 before reaching operational status. 

The doctrine of Space Control has only recently emerged within both the DoD 

and the Air Force.  DoD 3100.10 defines Space Control as:  “Combat and combat support 

operations to ensure freedom of action in space for the United States and its allies and, 

when directed, deny an adversary freedom of action in space.”  It further delineates Space 

Control mission areas to include surveillance of space; protection of U.S. and friendly 

space systems; prevention of an adversary’s ability to use space systems and services for 

purposes hostile to U.S. national security interests; negation of space systems and 
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services used for purposes hostile to U.S. national security interests; and directly 

supporting battle management, command, control, communications, and intelligence. 

The Air Force uses Air Force Doctrine Document (AFDD) 2-2, “Space 

Operations,” to specify the approved methods and means of conducting counterspace 

activities.  The function of Counterspace is assigned to fulfill the Space Control mission 

area.  AFDD 2-2 describes Counterspace Operations consisting of those operations 

conducted to attain and maintain a desired degree of space superiority by allowing 

friendly forces to exploit space capabilities while negating an adversary’s ability to do the 

same. 

As with most functional areas, Counterspace is divided into offensive and 

defensive components.  Offensive Counterspace (OCS) operations preclude an adversary 

from exploiting space to his advantage (AFDD 2-2, 2001).  The usual continuum of 

Deception, Disruption, Denial, Degradation, and Destruction are available means. 

Defensive Counterspace (DCS) operations preserve U.S./allied ability to exploit 

space to its advantage via active and passive actions to protect friendly space-related 

capabilities from enemy attack or interference (AFDD 2-2, 2001).  Both active (e.g. 

detect, track, and identify) and passive (e.g. survivability) techniques are promoted.  

Space Control cannot be effectively achieved without both robust OCS and DCS 

capabilities. 

This research directly supports the ability to conduct DCS operations.  Analyzing 

the technical challenges arising from a microsatellite rendezvous concept helps 

characterize feasible adversary OCS capabilities, and thus necessary U.S. defenses.  Lt 
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Gen Leaf recently discussed a future space activity identification capability gap resulting 

from a multi-service review.  The general asserted,  

We must have good, timely space situational [SA] awareness – not just 
because of our increased reliance on space capability and the complexity 
of all that occurs in space, but also because of potential threats to those 
capabilities.  The number of nations that utilize space-based capabilities 
and the way that they are used are both expanding.  So we have to ensure 
that our space SA…doesn’t simply track objects but is able, in a timely 
manner, to recognize changing situations in space, just as we do in the 
atmosphere or in the sea.  (Grossman, 2003b) 
 
This theoretical capability gap, between what we need and what we have, is not 

well understood.  The fact that we do not have a good characterization of feasible 

adversary OCS capabilities leads to a poor understanding of the gap.  Better 

comprehension of this potential threat is the aim of this study. 

Problem Statement/Research Objectives 

The overall objective of this research effort is the analysis of potential 

counterspace threats from foreign countries or organizations.  Counterspace operations 

that are possible with readily available technology and information will be evaluated.  

This effort is a systems design study on a potential foreign offensive counterspace 

satellite to identify the technical challenges arising from rendezvous with a non-

cooperative satellite. 

The specific objective is to determine if it is possible to design, build, and operate 

an offensive microsatellite using off-the-shelf technology and information that is publicly 

available.   The microsatellite must be able to maneuver to rendezvous with a target 

satellite, maintain proximity with the target, and perform its mission.   
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For this project, it is assumed the microsatellite will be placed into an orbit similar 

to that of the target satellite, approximately 1000 km behind it in the same orbital plane.  

The microsatellite then performs rendezvous maneuvers to approach the target. 

It is further assumed the microsatellite has perfect knowledge of its own position 

and velocity but must estimate that of the target.  The microsatellite would likely begin 

with an orbit solution derived from off-board sensors.  As the microsatellite approaches 

the target, on-board sensors would detect the target satellite and an updated orbit solution 

would be calculated.  This would allow the microsatellite to complete the rendezvous 

without any feedback from the target satellite. 

The unique aspect of this problem involves the use of an integrated estimator and 

controller to more closely model reality.  This research then takes an additional step to 

make a systems-level feasibility assessment of the proposed microsatellite threat.  

Methodology 

A high-level systems view was coupled with a more detailed technical assessment 

to form the approach to answer the research objective.  Systems engineering design tools 

were first used to identify the driving technical areas to focus on.  Once identified, these 

guidance, navigation & control (GN&C) algorithms were studied extensively to 

appreciate the evident as well as subtle application challenges involved.  Finally, the 

systems view was again taken to make the concluding feasibility assessment.    
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to provide a review of microsatellite technology 

and recent rendezvous-related research efforts.  Applicable industry, academic and 

military microsatellite efforts are presented.  Significant challenges regarding GN&C are 

highlighted.   

Previous microsatellite rendezvous research results are reviewed next.  The focus 

is on AFIT work leading up to this research, and supplemented were appropriate.  The 

control laws and orbit determination/navigation required to support a non-cooperative 

rendezvous make up the primary body of research drawn upon in developing the starting 

point for this project. 

Literature reviewed was primarily limited to open-source as the feasibility of a 

relatively low-tech solution using off-the-shelf technology and publicly available 

information is being evaluated.  The review highlights several key findings as 

summarized below.  The microsatellite industry is rapidly becoming capable of providing 

system solutions to a very diverse set of problems, to include space control applications.  

Rendezvous with a non-cooperative target is a non-trivial operation, but key elements of 

control and orbit determination have been separately demonstrated.  Little research has 

been accomplished to evaluate systems-level feasibility from a systems engineering 

perspective. 
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Microsatellites 

A microsatellite is a small satellite generally considered to have mass less than 

100 kg.  They are typically more economical to develop and operate, and quicker from 

concept to operation compared to traditional satellites.  There has been considerable 

effort in the research and development of capabilities using microsatellites of late.   

Common uses include visible sensing, multi-spectral imaging, radar, infrared, 

communications, and navigation. 

 Surrey Satellite Technology Ltd. (SSTL) is a world leader in the development of 

microsatellite technologies.  Since SSTL spun off from the University of Surrey 

Engineering Department in 1985, they have launched roughly one spacecraft per year, 

pushing small satellite technology (Morring, 2003).  SSTL claims they were the first 

professional organization to offer low-cost small satellites with rapid response employing 

advanced terrestrial technologies.  They indeed have an impressive track record in an 

emergent field.  

SSTL’s AISAT-1, developed for the international Disaster Monitoring 

Constellation, has successfully completed over one year of operations.  Imagery derived 

has been useful to authorities with areas of responsibility from hydrological mapping to 

the threat of locust plagues.  The AISAT-1 microsatellite is pictured in Figure 1 below. 
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Figure 1.  AISAT-1 Microsatellite (SSTL, 2003)   

 

The European Space Agency (ESA) is also a significant player using small 

satellites for advanced science missions.  ESA’s Project for On-board Autonomy (Proba) 

is using a microsatellite to flight test on-orbit operational autonomy.  Proba-1, launched 

in October 2001, returned high-resolution images of Earth and conducted various 

radiation studies (Morring, 2003).  Proba-2, scheduled for launch in 2006, will study the 

sun, providing early warnings of solar flares.  Frederic Teston, Proba project manager 

notes that, “small satellites have proven their worth for rapid testing of spacecraft 

techniques and onboard instruments.  They can also support dedicated missions very 

efficiently” (SpaceDaily, 2003).  A Proba microsatellite is depicted below in Figure 2. 
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Figure 2.  Artist Impression of Proba in Orbit (ESA, 2003)   

 

The Air Force Research Laboratory (AFRL) is currently building and 

demonstrating microsatellite technologies.  Specifically, the Experimental Spacecraft 

System (XSS) Microsatellite Demonstration Project includes two very applicable 

missions.  These missions are to actively evaluate future applications of microsatellite 

technologies to include:  inspection, rendezvous and docking; repositioning; and 

techniques for close-in proximity maneuvering around on-orbit assets (XSS-10 Fact 

Sheet).   

XSS-10, launched in January of 2003, commenced an autonomous inspection 

sequence around the second rocket stage, transmitting live video to ground stations.  Key 

technologies demonstrated include: lightweight propulsion; guidance, navigation and 

control (GN&C); and integrated camera and star sensor (XSS-10 Fact Sheet).  XSS-10 
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achieved its primary mission by successfully maneuvering from within 100 m to 35 m of 

the rocket stage, backing away and repeating the process again.   

Work on the follow-on vehicle, XSS-11, continues.  XSS-11 is to further advance 

technologies and techniques to increase the level of onboard autonomy.  One of the major 

challenges is in how to sense relative position and velocity when in proximity to another 

space object (Partch, 2003).  The efforts of AFRL confirm the need for complex 

navigation and orbital guidance algorithms onboard the spacecraft.  XSS-11 is illustrated 

in Figure 3 courtesy of AFRL.  

 

 

Figure 3.  XSS-11 Operating a Low-Power Lidar (Partch, 2003)   

 

XSS-11 is both a fast paced, 30-month, and highly collaborative effort.  The 

Space Vehicles Directorate of AFRL is partnering with Lockheed Martin and Jackson & 

Tull to build and integrate the microsatellite.  It will employ a sophisticated three-axis 

stabilized platform, advanced propulsion system, and communications subsystems 
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pushing the scientific envelope.  This will all lead to real-time streaming video of the 

proximity operations being sent to ground operators. 

The avionics system is understandably the core of the XSS-11 spacecraft.  The 

radiation hard Power PC 750 processor, develop by AFRL and NASA, enabling the 

complex data processing, guidance algorithms, and onboard autonomy will encounter its 

first flight test on XSS-11(Partch, 2003).  The challenge of sensing relative position and 

velocity also required a new material solution.  Due to the lack of communication with 

the target satellite, AFRL had to develop alternative approaches for relative position 

determination.  The active sensing system selected involves a high tech active scanning 

lidar ranging system.  Complementing the active system, XSS-11 will employ a 

combined visible camera and star tracker passive remote sensing system.  Finally, 

onboard iterative trajectory simulations are coupled with an advanced autonomous event 

planner, monitor, and forward-thinking resource manger to optimize the timing of rocket 

firings (Partch, 2003).  The development and miniaturization of the above key 

components required significant joint research, development, and integration. 

The above review is only a small sample of current and projected microsatellite 

activity in industry, academia, and military arenas.  It serves to support the argument that 

microsatellite capabilities will continue to rapidly increase as technical hurdles are 

overcome.  Specific to the non-cooperative rendezvous problem, the work of AFRL is 

particularly applicable. GN&C technology maturation is an area of intense examination.  

Advances in miniaturization and the proliferation of space technologies will enable many 
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less knowledgeable countries to contend, as unsolvable problems of today will be taken 

for granted tomorrow.    

Relevant Research 

A wealth of previous research has been conducted at AFIT regarding 

microsatellite rendezvous and docking operations.  Just within the last two years, work 

related to the selection of tracking and orbit determination architectures; rendezvous 

control algorithm development; and target satellite dynamics modeling for microsatellite 

docking detection has been accomplished.  A recent American Astronautical Society 

paper outlining a conceptual design for the GN&C system for a maintenance and repair 

spacecraft complements the above work. 

Control Laws 

Troy Tschirhart, a former AFIT master’s student, studied the control laws 

necessary for achieving rendezvous with a non-cooperative target while minimizing fuel 

requirements.  The relative motion of a microsatellite and target satellite were described 

using Hill’s equations and two different controller methodologies were investigated.  An 

impulsive thrust controller based on the Clohessey-Wiltshire solution was found to use 

little fuel, but was not very robust.  A continuous thrust controller using a Linear 

Quadratic Regulator (LQR) was found to be more robust, but used much more fuel.  The 

algorithm developed for this control method is depicted in Figure 4 below. 

 



 

14 

Calculate Optimal Gain Matrix, K

Calculate the control input,  )( tgtmicro xxKu rrr
−−=

Check for Rendezvous Criteria 

Calculate the microsatellite’s state vector,
Calculate the target satellite’s state vector, tgtxr

microxr

Add the control input to the two-body equations
of motion, and propagate one time step:

ua
r

rr p
rr

r

r
&&r ++−= 3

µ

Find the      for the step by calculating the 
product of the magnitude of the control input 
and the time step size.  Accumulate      over 
the run

v∆

v∆

Calculate Optimal Gain Matrix, K

Calculate the control input,  )( tgtmicro xxKu rrr
−−=Calculate the control input,  )( tgtmicro xxKu rrr
−−=

Check for Rendezvous Criteria 

Calculate the microsatellite’s state vector,
Calculate the target satellite’s state vector, tgtxr

microxrCalculate the microsatellite’s state vector,
Calculate the target satellite’s state vector, tgtxr

microxr

Add the control input to the two-body equations
of motion, and propagate one time step:

ua
r

rr p
rr

r

r
&&r ++−= 3

µ

Add the control input to the two-body equations
of motion, and propagate one time step:

ua
r

rr p
rr

r

r
&&r ++−= 3

µ

Find the      for the step by calculating the 
product of the magnitude of the control input 
and the time step size.  Accumulate      over 
the run

v∆

v∆

 

Figure 4.  Linear Quadratic Regulator Propagation Algorithm (Tschirhart, 2003) 

 

As a final solution, a hybrid controller was evaluated which uses the low thrust 

Clohessey-Wiltshire approach to cover most of the necessary distance, and then switches 

to the Linear Quadratic Regulator method for the final rendezvous solution.  Results 

show that this approach achieves rendezvous with a reasonable amount of control input 

(Tschirhart, 2003). 
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This work resulted in a feasible controller algorithm assuming perfect knowledge 

of the target satellite’s state (position and velocity).  The Hybrid controller developed 

achieves rendezvous to the specified relative distance and velocity in 590 minutes, using 

48.9 m/s V∆ .  The final results of Tschirhart’s controller analysis are summarized in 

Table 1. 

 

Table 1. Tschirhart Controller Results Summary 
Controller Type ∆V (m/s) Time to Rendezvous (min)
Impusive (CW) 35.75 368*

Continuous (LQR) 383.11 384
Hybrid 48.89 590

*Note: Impulsive Controller does not meet criteria, 3.3 km is closest approach  
 

It is significant to note the Hybrid controller achieved rendezvous with considerable 

V∆ savings over the LQR controller.   

 Recommendations for further research included investigating the use of gain 

scheduling as part of an LQR controller, and the incorporation of a sequential filter.  Gain 

scheduling was suggested in order to lower control usage during the majority of the 

rendezvous, and then increase it at the end to complete the rendezvous without the 

complexity of a hybrid controller.  A sequential filter was recommended to estimate the 

state of the target satellite, incorporating realistic uncertainties in using sensor 

measurements (Tschirhart, 2003).  

The LQR controller is of most interest to this researcher given the gain-scheduling 

recommendation.  Therefore the final LQR design results will be reviewed here.  

Tschirhart used a constant State Weighting Matrix, Q  as: 
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and a constant Control Weighting Matrix, R  as: 
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The quadratic cost function: 

 
( )dtRuuQxxJ ∫

∞

′+′=
0  

(3) 

was then minimized in order to obtain the optimal gain matrix to apply to the control 

thrust, where x  represents the system state (position and velocity) and u  is a vector of 

control inputs.   

The controller decreased the relative distance between the microsatellite and 

target satellite as shown below in Figure 5.  The distances in the figure were calculated in 

the relative reference frame and propagated with the linear equations of motion. 
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Figure 5.  Relative Distance during LQR Rendezvous (after Tschirhart, 2003) 

 

The position of the microsatellite relative to the target, captured in the δθδ orr,  

plane is shown in Figure 6.  The figure nicely illustrates how the microsatellite initially 

begins trailing the target by 1000 km in the same orbital plane, and then drops in altitude 

to increase its speed (i.e. mean motion).  Final rendezvous is achieved as the 

microsatellite arrives within 1 m and 1 cm/s of the target.  This particular controller 

configuration led to the final LQR rendezvous results included in Table 1 above.  
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Figure 6.  LQR Rendezvous in the δθδ orr,  plane (after Tschirhart, 2003) 

 

Orbit Determination/Navigation 

A three-phase tracking system architecture concept and orbit determination 

routines for non-cooperative rendezvous were developed by another AFIT master’s 

student, Brian Foster.  Of particular interest to this research is the on-orbit, third phase, 

orbit determination routine to estimate the target satellite’s orbit.  A Non-linear Least 

Squares orbit determination filter was implemented to accomplish this final phase.   As 

expected, the filter converged to a solution based on simulated data. 

The orbit determination filter, as implemented, was found to perform best given a 

large number of observations which took more collection time and thus would cause 
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significant processing delays (Foster, 2003).  One specific simulation run found the filter 

was able to reduce the estimate error from an initial 5.2 km to approximately 5 m given 

100 data points (sensor observations) separated by 60 seconds each.  Less data still 

allowed the filter to converge on an estimate, but included a much larger error compared 

to the truth model.   

Foster realized that in a rendezvous mission, time to collect and process data may 

not be available and thus control maneuvers may have to be based on less accurate 

position estimates.  The development of a Kalman-type filter to allow for real-time 

processing of observation data for the orbit determination process was among the 

recommendations for future work. 

Summary 

The study and use of microsatellites to perform a variety of missions is currently 

underway.  It is becoming routine to not only consider small satellites for technology 

demonstrations, but operational missions as well.  Industry is responding to demand by 

producing creative solutions with applications only bound by human imagination.  

Previous AFIT research on control laws and orbit determination paved the way for an 

integrated GN&C analysis.       
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III.  Methodology 

Chapter Overview 

The purpose of this chapter is two-fold.  The first part describes the systems 

engineering approach taken for this feasibility analysis.  This section includes a top-level 

systems architecture for the potential system being evaluated.  The second part details the 

necessary technical theory required to solve the rendezvous problem.  This includes 

orbital dynamics, control, orbit determination, and estimation theory.  The method taken 

is a top-down systems approach with the majority of effort being spent on the driving 

GN&C algorithm integration.  MathWorks’ MATLAB® software was the tool used for 

the algorithm development and evaluation. 

The problem statement specified that the microsatellite will begin approximately 

1000 km behind the target in the same orbital plane.  In order to better scope this project, 

the rendezvous has been segmented into phases.  The Overarching CONOPS, including 

the three phases, is in Table 2 below. 

 

Table 2. Overarching CONOPS 
Phase Range Start (km) Range End (km) Sensor Used Purpose
OC-1 1000 km 1000 km Ground Obtain Initial Estimate
OC-2 1000 km 5 km Ground Initial Rendezvous
OC-3 5 km 1 m On-Orbit Final Rendezvous  

 

In Overarching CONOPS Phase 1, OC-1, ground-based sensors would be used to 

generate an initial target state estimate.  Although this early phase would likely require 

significant global infrastructure to do well, it is not the focus of this research (Foster, 
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2003).  Phase 2 involves closing the relative distance between the microsatellite and 

target down to 5 km.   This value was chosen as it represents the expected outside range 

of an on-orbit lidar sensor.  The control law work of Tschirhart led this researcher to 

determine this second phase is quite achievable to a reasonable error.  The final 

rendezvous phase, OC-3, is what is studied in detail in this work.  The control and 

estimate accuracy required to achieve rendezvous to within 1 m is certainly the most 

challenging part of the problem.   

Systems Engineering View 

There is a distinct difference between traditional, or discipline-specific 

engineering, and systems engineering.  According to Dennis Buede, a well respected 

expert in the systems engineering field, Engineering is defined as a “discipline for 

transforming scientific concepts into cost-effective products through the use of analysis 

and judgment” (Buede, 2000).  This often applies best to hardware component or 

individual software item development.  Buede further defines the Engineering of a 

System to be the “engineering discipline that develops, matches, and trades off 

requirements, functions, and alternate system resources to achieve a cost-effective, life-

cycle-balanced product based upon the needs of the stakeholders”  (Buede, 2000).  

Systems engineering, at a very basic level, is the effort to create an entire integrated 

system, not just a bunch of components, to satisfy the need. 

Taking a systems view involves the up-front planning for and subsequent 

integration of the traditional engineering products.  Many standard tools are becoming 

available to the systems engineer which result largely in non-material products essential 
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to system analysis or evaluation.  A few concepts applicable to the analysis of a system 

include an Operational Concept, External Systems Diagram, and a Systems Engineering 

Architecture. 

An Operational Concept often includes a vision for what the system is, a 

statement of mission requirements, and a description of how the system might be used.  

Figure 4 below shows three primary choices considered by NASA engineers in 

determining an Operational Concept for the moon landing during the 1960’s (Brooks et 

al, 1979; Murry and Cox, 1989).   
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Figure 7.  Alternative Concepts for Apollo Moon Landing (Murry and Cox, 1989) 

 

This illustration demonstrates how several potential alternatives may exist for 

solving a problem.  The selection of the most desirable concept(s) is the first step in 
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evaluating the feasibility of the system.  Clearly, if a feasible Operational Concept exists, 

then it is possible that a material solution can follow.  Examples of Operational Concepts 

that did not work out in practice include those for previous missile defense programs such 

as the Strategic Defense Initiative, Brilliant Eyes, and Brilliant Pebbles.  These cases 

show that it is not sufficient to have just an Operational Concept.  It can identify flaws in 

initial thinking, but cannot definitively tell you the system will work.  More effort is 

needed for that.   

The creation of an External Systems Diagram (ESD) is another useful tool in the 

design and evaluation of a system.  It is a meta-system model of the interaction of the 

system with other external systems and the relevant context (Buede, 2000).  The 

recognized value of an ESD is in clearly defining system boundaries.  Although these 

boundaries have many useful roles for the systems engineer, for this project they simply 

help put the system in context to aid in the feasibility assessment.  An ESD can be 

depicted, in its simplest form, as in Figure 8 below.  The system itself, external systems, 

and the context can all be clearly differentiated using a model of this type. 
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Figure 8.  Depiction of the System, External Systems, and Context (Wieringa, 1995) 

 

A Systems Engineering Architecture is useful for creating (i.e. conceptualizing, 

designing and building) complex, unprecedented systems.  Architecting is known to be 

both an art and a science in both the traditional home building and space system domains.  

Architectures are not just useful in the development of systems, however.  An emerging 

application is in carrying out behavior and performance analysis and to evaluate potential 

system designs.  Specifically, architectures are beginning to be used to help determine if a 

proposed system will perform the desired mission in the desired manner, or Operational 

Concept.   

A complete systems architecture is composed of the three views, or perspectives.  

Figure 9 below illustrates how the Operational, Systems, and Technical Standards Views 

are combined to fully describe the system. 

     

System

External Systems

Context

are impacted by “System”

impacts, but not impacted by, “System”
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Figure 9.  Architecture Views (DoDAF) 

 

An architecture is developed for a specific purpose and only to the point that useful 

results are obtained.  The right mix of high-level and detail views must be sought for an 

effective, efficient artifact to result.   

The Operational View (OV) includes the tasks, activities, and operational 

elements.   It generally involves both graphic and textual descriptions to convey the 

concepts and intended uses of the system.  The Systems View describes and interrelates 

the technologies, systems and other resources necessary to support the requirements.  The 

Technical Standards View contains the rules, conventions and standards governing 

system implementation. 

The intent of this research is to develop only the minimum set of architecture 

products necessary to make a top-level evaluation of system achievability.  This 

researcher has developed three OV products for the system evaluation:  High-level 

Operational Concept Graphic, Operational Concept Narrative, and Functional 
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Decomposition.  Therefore, the Systems and Technical Standards views have not been 

completed.  Although all three views are necessary for a complete systems architecture, 

the OV is deemed sufficient for this project evaluation. 

In formally evaluating a system, the development of the system architecture is just 

one step in the process.  Dr. Alexander Levis, Chief Scientist of the Air Force, outlines an 

evaluation approach in Figure 10 below.  Once an architecture is developed, an 

executable model must then be constructed and run to develop analysis results.  Only a 

top-level architecture design was developed for this project, therefore only a qualitative 

evaluation of the system can be made. 
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Figure 10.  Architecture Evaluation Approach (after Levis, 2003)   

        

Control Theory 

 This section outlines the orbital dynamics theory applied to the control aspects of 

the rendezvous problem.  Guidance, or orbit control, is defined simply by Wertz as 

“adjusting the orbit to meet some predetermined conditions” (Wertz, 1999).  The 

conditions in this case are those of a successful rendezvous, nominally within 1 m 

relative distance and 1 cm/s relative velocity between the microsatellite and target.   
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Before the details specific to this rendezvous problem are discussed, an interesting 

historical control system is presented.  Perhaps one of the earliest control systems ever 

employed was by Hero of Alexandria in ancient times.  The device for opening his 

temple doors is shown in Figure 11 below.   

 

 

Figure 11.  Hero’s Control System for Opening Temple Doors    

 

The system input was lighting the alter fire.  Water from the container on the left 

was driven to the bucket on the right by the expanding hot air under the fire.  The bucket 

descended as it became heavier, thus turning the door spindles and opening the doors.  

Extinguishing the fire had the opposite effect.  As the control mechanism was not known 

to the masses, it created an air of mystery, demonstrating the power of the Olympian 

gods. 
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In order to apply the theory to the rendezvous problem, it is necessary to first 

outline relative motion.  This theory describes the microsatellite and target positions and 

velocities relative to a circular reference frame.  Hill’s coordinate frame, shown in Figure 

12, can aid in illustrating this concept.  The origin O  is centered in the Earth and fixed in 

inertial space.  'O  is the origin of a reference frame that is centered on the instantaneous 

location of a point moving about O  in a circular orbit with mean motion, n .  The unit 

vectors in the circular reference frame (RTZ) are zr eee ˆ,ˆ,ˆ θ  in the radial, in-track, and out 

of plane directions, respectively, and or  is the radius of the circular reference orbit 

(Tragesser, 2003).   

 

 

Figure 12.  Hill’s (RTZ) Coordinate Frame    

 

A satellite can be added to Figure 12, to illustrate the relative position from the 

reference orbit.  Figure 13 below illustrates this relative position in the RTZ coordinate 

frame. 

rê

θê

zê
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Figure 13.  Relative Position in RTZ Coordinate Frame    

 

In this frame, the position of the satellite is: 

 ( )[ ] ( )[ ] [ ] zoro ezerrerrr ˆˆsinˆcos δδθδδθδ θ ++++=
r   (4) 

and the velocity can be found from: 

 ( ) ( ) ( )rnr
dt
dr

dt
dv

oi
rrrrr

×+==  (5) 

where the superscripts i  and o  correspond to the inertial and circular reference frames, 

respectively, and the mean motion of the circular reference frame is: 
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µ
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Through a fair amount of manipulation, the relative equations of motions follow as in 

Equation 7. 

rê

θê

zê Satellite 

δθ
or

zδrro δ+

'O

O



 

30 

 

( ) ( )

znz

rnrnrnr

rrnrrnnrr

ooo

ooo

δδ

δθδθδθδ

δδθδδ

2

22

22

2

22

−=

−=−+

−−=+−−

&&

&&&

&&&

 (7) 

Solving Equation 7 yields: 
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and: 
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where nt=ψ .  In compact form: 

 ( )[ ] ( )[ ] ( )[ ]00 vrtv vvvr
rrr δδδ Φ+Φ=  (10) 

and: 

 ( )[ ] ( )[ ] ( )[ ]00 vrtr rvrr
rrr δδδ Φ+Φ=  (11) 

Equations 10 and 11 describe the relative velocity and position, respectively, of the 

satellite with reference to a circular reference orbit.  For the theory to hold, both the 
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microsatellite and target must remain sufficiently close to the circular reference orbit 

(Wiesel, 1997). 

The specific controller scheme chosen uses a Linear Quadratic Regulator (LQR) 

following the successful results of Tschirhart’s work.  The theory required for 

implementation follows, based on the relative reference frame in Figure 13 and the 

relative equations of motion in Equation 7.   

A state vector comprising the relative velocity and position can be defined as:   
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and the derivative as: 
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The relative equations of motion can be placed in state equation form: 

 uBxAx rr&r +=  (14) 

where ur  is a vector of control inputs.  Equations 7, 12 and 13 can now be used to rewrite 

Equation 14 as: 
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     A Linear Quadratic Regulator obtains the optimal gain matrix K  such that the state-

feedback law: 

 xKu rr
−=  (16) 

minimizes the quadratic cost function: 

 ( )∫
∞

+=
0

'' dtRuuQxxJ  (17) 

The associated Riccati equation is solved for S : 

 0'' 1 =+−+ − QSBSBRSASA  (18) 

where Q  is the State Weighting Matrix and R  is the Control Weighting Matrix.   

Higher values in the Q  matrix speed movement toward the desired state, and 

higher values in the R  matrix reduce control usage (Tschirhart, 2003).  The values of Q  

and R  have been selected to follow the forms of Equations 19 and 20 below.  The values 

of q  were be set to 1, while r  was allowed to vary during the rendezvous process as gain 

scheduling is implemented. 
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MATLAB’s LQR function is used to calculate the optimal gain matrix as: 

 SBRK '1−=  (21) 

The control input of Equation 16 must now be modified to account for the fact the 

microsatellite is chasing the target rather than the reference.  This control should be based 

on the difference between the microsatellite’s state vector and the target’s state vector: 
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The LQR routine developed by Tschirhart, outlined in Figure 4, was used to begin 

this study.  The final hybrid controller solution was not examined in favor of 

implementing gain scheduling in the LQR algorithm.  Once better understood, this gain 

scheduling LQR controller was coupled with different estimation filters, attempting to 

construct an integrated solution.   
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Orbit Determination Theory 

In using only the above orbital dynamics and control theory to solve the 

rendezvous problem, perfect knowledge of both the microsatellite and the target must be 

assumed.  One can expect the microsatellite maintains fairly good knowledge of its own 

state, by using GPS for example.  The position and velocity of the target, however, must 

be estimated in some manner.  As in an electrical filter which extracts the desired signal 

from the undesired, an estimation algorithm which extracts the system state from 

observations with errors is called a filter (Wiesel, 2003).  An observer, or filter, must be 

designed to estimate the plant states that are not directly observed.  

  There are various methods of reconstructing the states from the measured 

outputs of a dynamical system.  Estimation filter types relevant to this research include:  

linear, nonlinear, batch, and sequential.  A linear estimator assumes the data is linearly 

related to the system state at the time taken.  This can greatly simplify the problem, but is 

not applicable in many cases.  In a nonlinear estimator, the observed quantities are 

allowed to be related to the system state by a very nonlinear set of relations (Wiesel, 

2003).  Another way to classify a filter is via how the data are processed.  A batch 

algorithm assumes all data are available before the estimation process begins, and is all 

processed in one large batch.  A sequential filter is continuously taking in new data and 

producing an improved estimate.  A batch algorithm can be made more sequential by 

observing and processing smaller batches of data. 

An estimate of the target state, xr , will be represented as x̂r .  A trajectory to 

linearize the dynamics about must also be chosen.  As the true system state xr  is 
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unobtainable and an estimate x̂r  does not yet exist, a reference trajectory is used.  The 

reference trajectory, refxr , is a trajectory one expects will be close to the estimate.  The 

goal is to find corrections to the reference trajectory turning it into a reasonably good 

estimate, x̂r .  The reference trajectory usually comes from an initial orbit determination 

method and is then updated based on observation data (Wiesel, 2003). 

The control law in Equation 16 will be modified as: 

 xKu r̂r
−=  (23) 

For a linear filter, a reasonable way to estimate xr  is by duplicating the actual state 

dynamics in propagating x̂r  (Cobb, 2003).  The equations of motion for the target as 

shown in Equation 14 will then be described as: 

 uBxAx rr&r += ˆˆ  (24) 

Since the true target state, xr  cannot be measured, a correction term must be added 

to the dynamics equation for the observer.  Equation 24 can be modified to include a 

correction term proportional to the difference between the measured and estimated output 

(Cobb, 2003): 

 )ˆ(ˆˆ xCyLuBxAx rrrr&r −++=  (25) 

where L is the estimator gain matrix, yr  represents the model for the measurement, and 

C  models the observation geometry.  The xCy r̂r
−  term represents the filter residuals.  

This residual term can also be described as the difference between measured and 

predicted observation values: 
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 predictedmeasuredi zzr −=  (26) 

Shown in the form of Equation 26, it is evident the goal of the filter is to minimize the 

residual, or correction term. 

MATLAB contains a number of built-in linear filters.  A simple one to use is 

LQE.  The Linear Quadratic Estimator, or LQE, follows a stationary Kalman estimator 

design for continuous-time systems.  It returns the observer gain matrix L  to include in 

the equation of motion given in Equation 25.  A block diagram showing how a Kalman 

filter can used to form a Kalman estimator is shown in Figure 14.   

 

 

Figure 14.  Kalman Estimator (MATLAB)    

 

The MATLAB function LSIM can then be used to simulate the model response, 

obtaining the state estimate x̂r .  Specifically, the command lsim (sys, u, t) produces a plot 

of the time response of the LTI model sys to the input time history t, u.   

As stated above, a simple linear filter is not sufficient for many control problems.  

In such cases, a more complex nonlinear estimator may be required.  “To handle 
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problems which are useful in the real world we must abandon the linear case and work 

with nonlinear system dynamics and the nonlinear observation geometry” (Wiesel, 2003).  

Wiesel details a very good algorithm for a Non-linear Least Squares estimator in his book 

Modern Orbit Determination.  This routine amounts to calculating the state from the 

observations.  The specific steps given by Wiesel are as follows: 

1. Propagate the state vector to the observation time it and obtain the state 
transition matrix ),( oi ttΦ  

where 
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and zyx ,,  refer to the three components of the position vector.  The state 
transition matrix comes from linear dynamical systems, where 
Φ propagates the actual state as a function of time.  It is the gradient of the 
solution with respect to the initial conditions. 

2. Obtain the residual vector )(xGzr ii
r

−= , where iz is the measured 
observation vector and )(xG r is the predicted data vector of the current 
state vector xr .  Calculate the observation model iH  for this particular 

data point, where 
refxi x

GH r
∂
∂

= .  Then calculate the observation matrix 

Φ= ii HT .    

3. Add new terms to the running sums of the matrix ∑ −

i iii TQT 1'  and the 

vector ∑ −

i iii rQT 1'    
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where Q  is the total instrument covariance matrix. 

When all data has been processed: 

4. Calculate the covariance of the correction ∑ −−=
i iiix TQTP 11' )(δ  and the 

state correction vector at epoch ∑ −=
i iiixo rQTPtx 1')( δδ .  Note that the 

matrix ' 1
i i iT Q T−  must be invertible for a new estimate of the reference 

trajectory to exist.  This is known as the observability condition. 

5. Correct the reference trajectory )()()(1 ooreforef txtxtx δ+=+ .  1refx + is the 
new estimate of the reference trajectory. 

6. Determine if the process has converged.  If not, begin again at step 1.  If 
so, refx  is an estimate with covariance xP . 

7. Check to ensure there are no unbelievably large, greater than σ3 , 
residuals.  If so, reject the observation in step 3. 
 

Typical observation measurements are of the form:  range; range and range rate; 

range, azimuth and elevation.  The measurements chosen for this research include range, 

azimuth and elevation.  The observations iz  can then be described as: 

 ( )

( )

2 2 2

1

1 2 2

tan
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i
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z azimuth y x

elevation z x y

ρ
α
β

−
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⎡ ⎤
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r  (27) 

As the predicted observation value )(xG r  takes the same form as izr , the observation 

model 
refxi x

GH r
∂
∂

= components are given by: 

 
ρ
xH =11  (28) 

 
ρ
yH =12  (29) 
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ρ
zH =13  (30) 
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and all other components equal to zero.  iH  is found by taking the partial derivatives of 

the G  vector with respect to the state, evaluated on the reference trajectory.  

In non-linear filter design, one also needs to decide how sequential to make it.  

The work of Foster was based on a strictly batch method, assuming all data are available 
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and processed at once.  This is generally fine for many applications.  For the rendezvous 

problem at hand, however, it would likely take too long to accumulate all the desired 

observation data and process before making an update to the target estimate.  Waiting for 

this batch process, the uncertainty in the estimate continues to grow as the target and 

microsatellite orbit the earth.  Care must be taken, however, to not design a “fly-

follower” which may attempt to produce a new estimate given only a few observations. 

The above discussion relates to watching the covariance of the estimate, which 

grows during propagation.  It also tends to get smaller given new data.  This effect is 

shown in Figure 15, where the state covariance grows between updates and drops when 

updated. 

 

 

Figure 15.  Covariance Behavior with Time (Wiesel, 2003) 

 

If the filter behavior is as the top line “To Ignorance,” it fails as the knowledge of the 

current system state becomes more and more uncertain.  If behaving as “To Perfection,” 
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the filter believes it has achieved perfection and will cease to update the estimate even 

given new observation data.  This condition is often referred to as smugness as the filter 

will not react to additional input.  Neither of the above two conditions is desirable and 

avoiding them is an art of filter design. 

Summary 

This chapter outlined the Systems Engineering approach taken to evaluate the 

non-cooperative rendezvous.  An Operational Concept, External Systems Diagram, and 

Architecture were described as tools to assess top-level system feasibility.  A Linear 

Quadratic Regulator was discussed in context of orbit control laws.  Both linear and non-

linear filter theory was given to estimate the target state.  Wiesel’s Non-Linear Least 

Squares algorithm was detailed as a specific filter routine.  Finally, a few subtle filter 

design considerations were discussed. 
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IV.  Analysis and Results 

Chapter Overview 

This chapter contains the developed systems engineering products, technical 

GN&C algorithm analysis, and subsystem integration results.  The systems architecture 

and associated products developed are a necessary, but insufficient, step in the feasibility 

evaluation.  Assessment of the select products indicates top-level system feasibility while 

underscoring technical and integration complexity.   

Beginning the technical study, previous control law development was extended, 

by gain-scheduling, to show positive trade space between time-to-rendezvous and fuel 

usage.  Given this positive result, attention was focused on the orbit determination filter.  

The use of a linear estimator is shown to be inappropriate, while a nonlinear estimator 

requires advanced implementation for the application.  Integration of tailored controller 

and estimator components proved to be beyond the limits of text book algorithms.  It 

would be a non-trivial task to improve these algorithms to account for the necessary 

complex orbital dynamics involved.   

Extending this result leads to a low probability of designing, building, and 

operating a microsatellite to rendezvous with non-cooperative targets, using established 

GN&C software routines, in the very near term.  A systems or technical view is 

insufficient to show feasibility by itself.  The details that follow show how one view leads 

to possible attainment, while the other points to serious challenges.   
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Systems Engineering Front-end Results 

Operational Concept 

There are a number of ways in which a satellite can perform a non-cooperative 

rendezvous with a target satellite.  The chase satellite can be directly launched to 

rendezvous or it can perform orbit transfers from a similar orbit as the target.  In the latter 

case, trades are available between on-orbit and ground sensor/processing activities.  

Three alternative Operational Concepts are depicted in Figures 16-18 below. 

 

 

Figure 16.  Launch to Rendezvous Ops Concept  

 

The launch to rendezvous concept depicted in Figure 16 above, involves critically 

determining the launch timing of the chase satellite.  The most efficient way to 

rendezvous in this manner is to launch when the target orbit passes directly over the 

launch site.  Any deviations from the perfect launch time can result in very costly orbit-

plane changes.  The costs are not only in required weight for propulsion fuel, but also in 

design complexity.  This concept is relatively complicated and difficult to execute.  In 



 

44 

order to accomplish the rendezvous directly, without any on-orbit maneuvers, extreme 

launch precision is required.  This further requires very precise knowledge of the target 

state.  Given the above prerequisites, the direct launch to rendezvous operational concept 

may not represent a low tech solution very well.  

 

 

Figure 17.  Autonomous Rendezvous Ops Concept  

 

For the autonomous rendezvous, Figure 17, the chase satellite would perform the 

necessary orbit determination and control activities once given an initial target state 

estimate from the ground segment.  Radar and/or optical ground satellite tracking stations 

would be required to perform initial orbit determination, but then yield to on-orbit sensors 

once available.  Nominally, only the final 5 km of rendezvous would be performed 

completely autonomously by the chase satellite.  This is primarily limited by sensor 

performance characteristics.  The autonomous rendezvous concept still requires launch to 

a similar orbit as the target, just not requiring the exactness of the direct launch concept.  
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As long as the chase vehicle is placed into the same orbital plane, trailing the target by 

some reasonable amount, the autonomous rendezvous concept retains great potential. 

 

  

Figure 18.  Ground-Assist Rendezvous Ops Concept  

 

A concept using ground sensors and algorithms for the entire rendezvous is shown 

in Figure 18.  Whereas the previous concept only used ground resources for the initial 

orbit determination, this scheme relies on ground input for the entire rendezvous 

sequence.  This involves extensive development and infrastructure on the ground, but 

relatively little on the chase satellite.  The satellite would receive specific GN&C and 

propulsion commands to execute each rendezvous maneuver.  This alternative may 

alleviate some of the spacecraft development challenges.  The comprehensive ground 

infrastructure required, however, may also be beyond a low tech approach. 

Recalling from the problem statement, the microsatellite is set to begin in the 

same orbital plane, approximately 1000 km behind the target satellite.  The microsatellite 

then performs rendezvous maneuvers to approach the target.  Therefore the autonomous 
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and ground-assist approaches seem to be more appropriate than the launch to rendezvous 

concept.  The latter could be revisited, however, if other alternatives failed to produce an 

acceptable solution.  The above work establishes that there is adequate trade space to 

more fully define a final Operational Concept and thus a material solution may exist. 

External Systems Diagram 

The first step taken in developing an External Systems Diagram was to determine 

the first-order functions of the system.  Defining the top-level function of the system to 

be “Rendezvous with Target,” three additional sub-functions were determined.  The high-

level functional decomposition, in Figure 19 below, shows acquiring the target state, and 

determining and executing V∆  maneuvers as sub-functions.  This simple decomposition 

contains functions allocated principally to propulsion and GN&C subsystems.  

 

Rendezvous with Target

Acquire Target State Determine Delta V Requirements Perform Delta V Maneuvers

Rendezvous with Target

Acquire Target State Determine Delta V Requirements Perform Delta V Maneuvers

 

Figure 19.  High-Level Functional Decomposition   

 

The standard process modeling technique, IDEF0 (Integrated Definition for 

Function Modeling), was used to develop the External Systems Diagram (ESD).  The 

decomposition above was used as a starting point to begin the process.  Each of the three 
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sub-functions was identified as an activity in the ESD.  Input, outputs and controls 

(triggers) were then established for each activity function.  The resulting diagram in 

Figure 20 definitively displays the transformation of inputs into outputs by the system.  
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Figure 20.  Rendezvous External Systems Diagram   

 

The system boundary is not yet explicitly clear from Figure 20, however.  

Therefore, a second system ESD was developed following the construct of Figure 8.  The 

system as represented in Figure 21 is better differentiated from the environment, both 

external systems and context.  In this diagram, ground-based sensors and computing 

resources, support systems and the target satellite are depicted as external systems which 

interact with the microsatellite.  The context, space environment, acts on the 

microsatellite system, but is clearly not impacted by the system. 
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Figure 21.  System External Systems Diagram   

 

Even though both External System Diagrams developed are relatively simple, they do 

help scope the system and are a necessary prerequisite to system architecture creation.    

Systems Engineering Architecture 

A few top-level systems architecture products have been developed to illustrate 

one possible microsatellite architecture to achieve a non-cooperative rendezvous.  The 

products include an Operational Concept Graphic, accompanying Narrative, and a 

detailed Functional Decomposition.  Taken together, they document a rough Operational 

View of the architecture.  As stated in the methodology, only a qualitative assessment can 

be made based on these products.  The necessary executable models to base a quantitative 

assessment on are well beyond the scope of this research.   
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Operational Concept Graphic  

The High-Level Operational Concept graphic for the microsatellite system is 

shown in Figure 22.  The Operational Concept Narrative that follows describes in more 

detail the interactions between the entities portrayed in the graphic. 
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Figure 22.  High-Level Operational Concept Graphic   

 

Operational Concept Narrative 

The researcher considered a key thread to describe the Operational Concept – the 

sequence of activities that take place when a user authorizes the Microsatellite System to 

rendezvous for the purpose of disabling the Target satellite.  The architecture is, at this 

point, proceeding forward assuming the Autonomous Rendezvous Ops Concept 

alternative depicted in Figure 17.   
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In order to further bound the system, the key external systems and internal system 

components need to be identified.  The internal system components of the Microsatellite 

System include the items within the boxed part of the graphic.  They include the GN&C, 

Propulsion, Associated Subsystems, and System Operators.  GN&C and Propulsion 

subsystems are called out separately from other “Associated Subsystems” due to their 

strong relationship to the activities in the Rendezvous ESD of Figure 20.  

 System Operators are also drawn inside the box due to dependency on them for 

non-autonomous operations.  It is tempting to exclude the personnel from the system and 

only evaluate the hardware.  The researcher has elected to create the OV architecture 

products including operators to provide a better system evaluation.   

Key external systems include the Target, Command Authorities, Ground and 

Support Systems.  The graphic depicts how these systems interface with the 

Microsatellite System to include nominal activities. 

The rendezvous process can be described as follows:  Command Authorities 

determine a Target requires disabling.  This requirement is sent to the Microsatellite 

System Operators via a Space Tasking Order (STO).  The System Operators send a target 

acquire command to the Microsatellite Associate Subsystems.  The Microsatellite then 

acquires the Target state estimate, initially via Ground Systems.  The Microsatellite then 

begins the rendezvous maneuver, or V∆  calculations.  Once determined, the thrust 

requirements are sent to the Propulsion system to execute.  The target state acquisition 

through propulsion thrust loop continues based on Ground System tracking until the 

Microsatellite is within range of its on-board tracking sensor.   
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Once within range, nominally 5 km, the Microsatellite switches to autonomous 

mode for closed-loop tracking and control.  The target acquisition/propulsion thrust 

sequence continues as before, but now based on space-based sensor measurements, until 

rendezvous is achieved.  When rendezvous is achieved, Associate Subsystems are 

engaged to disable the identified target.  The disabling activity is outside the scope of this 

architecture and thus will not be detailed.  Finally, System Operators generate a mission 

report for Command Authorities. 

Functional Decomposition 

Given the External Systems Diagrams and Operational Concept presented above, 

it is now possible to further detail the initial, high-level, functional decomposition shown 

in Figure 19.  Whereas, the high-level decomposition facilitated ESD development, a 

more detailed decomposition is required to better evaluate the potential architecture.  The 

detailed functional decomposition is shown in Figure 23.   
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Figure 23.  Detailed Functional Decomposition   

 

Only two of the three initial sub-functions, Acquire Target State and Determine 

∆V Requirements were further decomposed.  The third sub-function, Perform ∆V 

Maneuvers, did not require such due to the relative simplicity of this function compared 

to the other two.  Each of the lowest-tier function could again be decomposed, but is not 

necessary for the purpose of this architecture evaluation.   

Analyzing the functional decomposition of Figure 23, two conclusions can be 

drawn.  First, the top-level function, Rendezvous with Target, quite easily decomposes 

into logical sub-functions of necessary depth and breadth to create a more detailed 

architecture.  This lends support to system feasibility at a very broad level.  Second, by 

analyzing the lowest-level sub-functions, it becomes apparent that a collection of 

complex, integrated activities must take place to perform the rendezvous mission.  The 

two functions decomposed to the lowest level, Acquire Target State and Determine ∆V 
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Requirements, are physically allocated to the GN&C subsystem.  The following sections 

provide the results of detailed GN&C algorithm analysis. 

Controller Gain-Scheduling Results 

The first technical area investigated was improving the controller developed by 

Tschirhart.  Although the impulsive/continuous burn hybrid model achieved a relatively 

efficient rendezvous, implementing a gain-scheduling LQR-only controller offered 

potential improvement with less complexity.  Thus, the State and Control Weighting 

matrices of Equations 19 and 20, respectively, were examined. 

To achieve more efficient control, one desires less control (larger R  or smaller 

Q ) initially, and more control (larger Q  or smaller R ) as the relative distance is reduced.  

This allows larger V∆  maneuvers to achieve final rendezvous, while avoiding such 

costly maneuvers early in the process.  Only one weighting matrix needs to change to 

attain the desired result.  The Q  matrix was left constant while the R  matrix was 

programmed to decrease over time.  The Control Weighting Matrix was set to vary as: 
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where  

 ),_()^_(*)( factorRnowdistrr finmag =  for 1_ >nowdist km (38) 

 ,finmag rr =  otherwise (39) 
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and nowdist _  is the relative distance between the two satellites.  This part of the study 

involved varying both the final magnitude of r  ( finr ), and factorR _ . 

 Reasonable trade space was discovered between the V∆  required and the Time to 

Rendezvous.  The results are summarized below in Table 3. 

 

Table 3. Gain-Scheduling Controller Results 
Case R_fin R_factor ∆V (m/s) Time to Rendezvous (min)

Baseline 5.00E+12 N/A 383.11 384
0-A 5.00E+12 1.00 73.63 524
1-A 1.00E+11 1.00 177.32 245
1-B 1.00E+11 2.00 34.99 572
1-C 1.00E+11 2.50 15.89 1128
2-A 1.00E+12 1.00 112.80 384
2-B 1.00E+12 2.00 19.68 933
2-C 1.00E+12 2.50 9.39 1929
3-A 2.00E+12 1.00 93.73 415
3-B 2.00E+12 2.00 16.66 1089
3-C 2.00E+12 2.50 8.06 2170  

 

The Time to Rendezvous and the V∆  required have, in general, an inverse relationship.  

This is due to the rendezvous time primarily being driven by the Control Weighting 

Matrix, R .  As a larger R  causes rendezvous to be achieved quicker, more fuel is 

consumed.  This correlation is illustrated in Figure 24. 
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Figure 24.  Gain-Scheduling Trade Results   

 

The Gain-Scheduling trade resulted in a controller that can be both more fuel 

efficient and obtains rendezvous quicker than the hybrid controller developed by 

Tschirhart, while maintaining flexibility.  Case 1-B, for example, achieved rendezvous in 

572 minutes, using 34.99 m/s V∆ .  This case exhibited fuel performance slightly better 

than the Impulsive thrust and Hybrid Controller, and an order of magnitude better than 

the Continuous Non-Gain-Scheduled LQR model shown in Table 1.  The Time to 

Rendezvous was slightly better than the Hybrid Controller, while taking a few additional 

earth orbits over the Non-Gain-Scheduled LQR Controller.  The related performance 

results are given below in Figures 25 and 26.   
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Figure 25.  Relative Distance during LQR Rendezvous – Case 1-B 
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Figure 26.  LQR Rendezvous in the δθδ orr,  plane – Case 1-B 

 

Although the results in Table 3 are only a subset, they show adequate trade space 

exists between the Time to Rendezvous and V∆  requirements.  The Baseline Case 

represents the Non-Gain-Scheduled LQR solution developed by Tschirhart.  The 

subsequent cases all used some level of gain scheduling, as listed in Table 3, to alter the 

dependent variables.  Higher values of finr  and factorR _  than are listed were found to 

either not converge or at least take too long, making them essentially not constructive.  

The main MATLAB routine is included in Appendix A.   
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Controller/Estimator Integration 

Linear Filter 

A simple linear estimator was attempted to integrate with the Gain-Scheduling 

Controller developed above.  In order to first acquire an appreciation for the MATLAB 

LQE and LSIM tools, a very straightforward estimator was developed.  The code is in 

Appendix B.  For this model, the equations of motion in Equation 15, with the control 

vector set to zero, and an Observation Geometry Matrix, C  containing range, azimuth, 

and elevation were used to obtain the estimator gain matrix, L  by LQE command.  LSIM 

was then used to calculate the target and target estimate states over time.  This is an open-

loop simulation, of the target only, to characterize the performance of a simple linear 

estimator. 

 The first simulation began with the target state estimate and target state equal.  

That is, target knowledge error was set to zero.  The initial target state vector, in the form 

of Equation 12 was given by: 
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 (40) 

The simulation was run for 10,000 seconds.  The resulting target position and velocity 

errors are plotted in Figures 27 and 28.  Note the state estimates appear to track the truth 

in all cases throughout the simulation.  Data taken at the end of the simulation show the 

total target position error, 6.16e-004 m, and the total velocity error, 1.76e-006 m, confirm 
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the visual conclusion.  These values are reasonably small as expected, given the perfect 

initial guess for the state.  In fact, the values are indistinguishable in the figures below. 
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Figure 27.  LQE/LSIM Target Position Error with Perfect Initial Estimate 
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Figure 28.  LQE/LSIM Target Velocity Error with Perfect Initial Estimate 

 

Given the estimator will not likely begin with a perfect initial guess, a 1 km target 

position error was introduced.  The 1 km value was assessed as the best an initial orbit 

determination method could produce as a starting point for any on-orbit estimation 

(Foster, 2003).  Using the same procedure as above, the target knowledge error was set to 

1 km, split evenly between the rê  and θê  components.  The filter performance for this 

case is given in Figures 29 and 30. 
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 Figure 29.  LQE/LSIM Target Position Error with 1 km Initial Error 
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Figure 30.  LQE/LSIM Target Velocity Error with 1 km Initial Error 

 

Although the state estimates for the 1 km initial error case also appear to track the 

truth somewhat well, a closer inspection is required.  In this case it is possible to 

distinguish, graphically, between the truth and estimate.  In Figure 31 below, the theta 

component has been removed to better illustrate the r  and z  components of the position 

truth and estimate.  
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Figure 31.  LQE/LSIM Target Position Error with 1 km Initial Error, r  and z  only 

 

Data taken at the end of the simulation show the total target position error, 841.26 m, and 

the total velocity error, 1.40 m, are significant.  Therefore, the filter does not exhibit the 

characteristic desired.  

Controller/Linear Estimator Integration Results 

The simple linear estimator was coupled with a Gain-Scheduling LQR Controller 

to investigate the system performance.  The rendezvous phase focused on remained to be 

the final 5 km of relative distance between the microsatellite and the target, or OC-3 in 

Table 2.  The first simulation ran open-loop, without microsatellite thrust control, for 200 

minutes.  The performance tracked against the target truth is provided in Figures 32-33 

for reference.  The relative distance between the microsatellite and the target truth is 



 

64 

periodic and remains within 20 m of the initial 5 km separation as seem in the fourth 

subplot of Figure 32. 
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Figure 32.  Open-Loop LQR/LQE - Target Truth, Perfect Initial Estimate 

 



 

65 

-5.005 -5 -4.995 -4.99 -4.985 -4.98 -4.975
-5

-4

-3

-2

-1

0

1

2

3

4

5
x 10

-3

δr
 (k

m
)

roδθ (km)

 

Figure 33.  Open-Loop LQR/LQE in δθδ orr,  plane - Target Truth, Perfect Initial 
Estimate 

 

The performance in Figure 33 above does not track to the origin as the control input is 

turned off.  The resulting open-loop, or “uncontrolled,” performance is as expected. 

The same performance results, measured against the target estimate, are provided 

in Figures 34-35.  The relative distance between the microsatellite and the target estimate, 

Figure 34, remains somewhat periodic but is more complex than the perfect initial 

estimate case shown in Figure 32.  The position of the microsatellite relative to the target 

estimate captured in the δθδ orr,  plane and shown in Figure 35 is far from ideal.  It 

depicts how the microsatellite has a very difficult time simply following the target 

estimate in this case.    
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Figure 34.  Open-Loop LQR/LQE - Target Estimate, Perfect Initial Estimate 
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Figure 35.  Open-Loop LQR/LQE in δθδ orr,  plane - Target Estimate, Perfect Initial 
Estimate 

 

This result caused the researcher to take a closer look at the target position error, 

or the difference between the truth and estimate.  The target position error is displayed in 

Figure 36 for this open-loop case.  The fairly periodic waveform of the error has 

amplitude of approximately 37 m, and period of 92 minutes.  The amplitude was found to 

slightly increase as the simulation time was extended.  The target state errors shown in 

Figure 36 add to the normally periodic open-loop performance shown in Figure 32 

producing the open-loop estimate performance in Figure 34. 
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Figure 36.  Target Position Error, Perfect Initial Estimate 

 

To illustrate how the estimate error can cause significant difficulties to the 

rendezvous problem, the loop was closed invoking microsatellite control based on the 

current target estimate.  The simulation again began with a perfect initial estimate for 

easy comparison to the open-loop performance above.  The results are given in Figures 

37-38 below.  The controller/estimator developed achieves rendezvous to the target in 

204 minutes, using 9.36 m/s V∆ .  It is important to recall this simulation began with the 

microsatellite trailing the target from only 5 km and a perfect initial estimate of the target 

state.  Therefore, results should not be directly compared to those by Tschirhart outlined 

in Chapter II, but represent only the final rendezvous phase studied.      
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Figure 37.  Closed-Loop LQR/LQE - Target Estimate, Perfect Initial Estimate 
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Figure 38.  Closed-Loop LQR/LQE in δθδ orr,  plane - Target Estimate, Perfect Initial 
Estimate 

 

The next task was to include some initial uncertainty in the target estimate.  The 

goal was to demonstrate if the microsatellite could still rendezvous to the target starting 

with a 1 km target position error.  After running the simulation for 1000 minutes, 

however, the minimum relative distance was never less than 59 m.  An initial error of 100 

m led to a minimum relative distance of 3.6 m, still greater than the required 1 m 

rendezvous specification.  Rendezvous was achieved, from 5 km out, in 481 minutes, 

using 12.39 m/s V∆ , beginning with a 10 m target position error.  Although this does not 

represent an achievable initial error, it does help characterize the integrated 
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controller/estimator performance.  The results for this final case are shown in Figures 39-

40. 
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Figure 39.  Closed-Loop LQR/LQE - Target Estimate, 10 m Initial Error 
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Figure 40.  Closed-Loop LQR/LQE in δθδ orr,  plane - Target Estimate, 10 m Initial Error 

 

The conclusion of integrating a linear filter with a Gain-Scheduled LQR 

controller is that it is not good enough to solve the rendezvous problem.  It only works for 

a nearly perfect model and initial guess.  The main obstacle encountered is that a linear 

filter cannot provide a good enough estimate given the anticipated initial target error. 

Nonlinear Filter 

The on-orbit Non-linear Least Squares (NLS) estimator developed by Foster, 

which follows the seven step process outlined in Chapter III, was used as a starting point 

for this element of the evaluation.  The NLS filter was first modified and then 

characterized to understand the basic performance before integrating with a controller.  A 
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key measure of filter performance is the residual term, or difference between measured 

and predicted observation values as given in Equation 26.   

An open-loop simulation containing 200 observations, separated by one minute 

each, converged on an estimate after seven filter iterations.  The initial estimate included 

a 1 km position error.  The data plot in Figure 41 displays the residual values by iteration.  

Subsequent iterations provide residuals significantly better than the previous, but it can 

be difficult to tell the difference graphically.  The first iteration was removed in 

generating Figure 41 to better show the remaining six.  It is clear that iterations three 

through seven are significantly better than iteration two.  Likewise, removing iteration 

two reveals that four through seven are significantly better than three. 
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Figure 41.  NLS Filter Residuals – Last Six Iterations 
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The residual values for just the final iteration, in Figure 42, are nicely distributed around 

zero and captured within +/- 6 m.   
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Figure 42.  NLS Filter Residuals – Final Iteration 

 

The resulting range residuals provide some confidence the filter is operating as 

desired.  The target position error after the 200 minute simulation is also of great interest, 

as the filter-provided estimate is the input to the controller.  The position error generated, 

by iteration, is shown in Figure 43.  The initial 1 km error data point, iteration 0, has been 

removed from the chart for clarity. 
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Figure 43.  NLS Target Position Errors  

 

After the first iteration, the error is reduced from 1 km to 46.48 m.  When convergence is 

achieved, after seven iterations, the error has been decreased to 1.06 m.   

Nominal open-loop filter performance has been assessed to be very good.  When 

the filter has converged on an estimate, both the range residuals and target position error 

are small, as desired.  The next activity was to introduce microsatellite thrust control to 

rendezvous with the target.   

Controller/Nonlinear Estimator Integration Results 

The modified NLS estimator characterized above was coupled with a Gain-

Scheduling LQR controller to evaluate the potential for closed-loop control from a poor 

initial estimate.  The top-level subsystem architecture was developed based on the 

algorithm functions and is shown in Figure 44 below.   



 

76 

Calculate Optimal Gain Matrix, K

Calculate the control input,  )( _ esttgtmicro xxKu rrr
−−=

Check for Rendezvous Criteria 

Calculate the microsatellite’s state vector,
Calculate the target satellite’s state vector, tgtxr

microxr

Add the control input to the two-body EOM, 
and propagate one sim time step:

ua
r

rr p
rr

r

r
&&r ++−= 3

µ

Take Observation Measurements, iz

Propagate Estimate one observation time step 

Generate Target Estimate             at epoch esttgtx _
r

estimatortsimt

estimatort

nobservatiot

Calculate Optimal Gain Matrix, K

Calculate the control input,  )( _ esttgtmicro xxKu rrr
−−=

Check for Rendezvous Criteria 

Calculate the microsatellite’s state vector,
Calculate the target satellite’s state vector, tgtxr

microxrCalculate the microsatellite’s state vector,
Calculate the target satellite’s state vector, tgtxr

microxr

Add the control input to the two-body EOM, 
and propagate one sim time step:

ua
r

rr p
rr

r

r
&&r ++−= 3

µ

Take Observation Measurements, iz

Propagate Estimate one observation time step 

Generate Target Estimate             at epoch esttgtx _
r

estimatortsimt

estimatort

nobservatiot

 

Figure 44.  GN&C Algorithm Architecture  

 

Four separate time steps were needed for the simulation.  A controller time step, 

controlt , an estimator time step, estimatort , an observation time step, observationt , and a 

simulation time, simt .  Table 4 below describes the use of each time step.  The controller 

and estimator time steps were set equal to eliminate the need for added complexity to the 

controller algorithm. 

 

Table 4. Simulation Time Step Definitions 
Time Step Definition

Controller Time between thrust control updates
Estimatator Time between estimate updates
Observation Time between measurement observations
Simulation Time of orbit propagation  
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The simulation time used for the stand-alone filter characterization above was 200 

minutes.  The controller in the integrated system cannot wait 200 minutes for a new target 

estimate, however.  The researcher needed to determine how quickly the filter could 

provide a reasonable estimate to pass to the controller.  Times between the baseline 

controller (for perfect knowledge) with a controller time step of 60 s and the stand-alone 

filter time of 12000 s were considered.  Beginning with the final 5 km rendezvous phase, 

OC-3 in Table 2, the integrated controller/estimator simulation was run for a single 

control loop.  The resulting target position error is plotted for various controller time 

steps in Figure 45.  Eliminating the first few data points result in a closer view of the 

remaining runs, as shown in Figure 46. 
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Figure 45.  Simulation Time Trade – Target Position Error  
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Figure 46.  Simulation Time Trade – Target Position Error, Select Data 

 

As the controller controls based on the relative position between the target 

estimate and microsatellite, a large position error is clearly undesirable.  Based on the 

above, allowing the filter at least 900 s results in a fairly good estimate.  Less time yields 

a useless target estimate.   

Studying the relative distance, in addition to the position error, exposes the fact 

that the controller/estimator time step must be selected carefully.  Specifically, a time 

near 1000 s was found to be most favorable, for a single control loop.  This simulation 

run reduced the relative distance from the initial 5.00 km to 1.04 km.  Time steps outside 

the range of 700-1400 s resulted in the microsatellite drifting further away from the target 

estimate.   

Having identified an initial controller/estimator time step of 1000 s, and an 

observation time step of 10 s, the integrated system was simulated for multiple control 

loops in an effort to achieve final rendezvous.  The 1000 s time step turned out to be too 
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large for the controller, however.  The performance for the first 20 control loops, 20,000 s 

of controlled flight, is shown below in Figure 47.  The sharp changes are a result of going 

too long between thrust vector updates in the LQR control.  A longer simulation, 

including more control loops, only results in the relative distance increasing. 
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Figure 47.  LQR/NLS Performance for stcontrol 1000= , stobs 10=  

 

The target position knowledge begins to significantly degrade after these first 20 

control loop iterations, as shown in Figure 48 below.  This is the cause for the degenerate 

performance experienced by running the simulation for longer periods of time.  
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Figure 48.  Position Error for stcontrol 1000= , stobs 10=  

 

Backing off on the Control Weighting Matrix, R , was attempted to help smooth 

out the control vector changes.  Specifically, finR  as used in Equations 37 and 38, was 

increased to 1e13, allowing less control thrust to be applied.  Although this did cause a 

smoother rendezvous approach, the filter was unable to converge on an estimate during 

the seventh control loop.  Figure 49 shows the performance just prior to filter failure.  

The performance for this case, although still somewhat severe due to the larger controller 

time step of 1000 s, more closely matches that of the non-gain-scheduled controller 

assuming perfect knowledge shown in Figure 6.  The large time span between control 

thrust updates has clear negative affect on the ability to meet final rendezvous criteria.  
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Figure 49.  LQR/NLS Improved Performance for stcontrol 1000= , stobs 10=  

 

The other variable control knob, controller/estimator time step, was examined 

next.  The lower bound identified by the simulation time trade study above, 700 s, was 

used to rerun the simulation.  This resulted in filter convergence failure after only a few 

control iterations, keeping the same 10 s observation time span as above.  When the 

interval was reduced to 1 s, yielding 700 data observations, performance improved.  The 

smoother curve of Figure 50, showing the first 12 control loops, is closer to that desired, 

but still short of rendezvous.  This 140 minute flight from 5 km out brought the 

microsatellite to within 67 m of the target.  
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Figure 50.  LQR/NLS Improved Performance for stcontrol 700= , stobs 1=  

 

Although outside the identified time step range, a run was conducted using 300 s 

steps for comparison.  The results for the first 12 control loops are illustrated in Figure 

51.  The performance more closely corresponds to a smooth curve, as desired, but breaks 

down half way to rendezvous as the estimator again fails to converge on an estimate.  The 

above results bound numerous cases attempted, none of which yielded satisfactory 

performance. 
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Figure 51.  LQR/NLS Improved Performance for stcontrol 300= , stobs 1=  

 

Alternative CONOPS for completing the final rendezvous phase were explored to 

find a sufficient, even if less elegant, solution.  One concept explored was to obtain a 

good estimate by following the target open-loop, and then quickly controlling without 

updating the estimate.  The system would perform an initial orbit determination using the 

onboard sensor and then control to that solution without further updates.  In this case, the 

estimate containing a 1 m initial error was simply propagated forward until the catch 

criteria was met.  This scenario resulted in rendezvous to the target estimate in 71 

minutes from the 5 km start.  The performance is provided in Figure 52.  As this case 
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employs the same small controller time step, 60 s, as the original LQR controller that 

assumed truth, the performance is very similar to that shown in Figure 6.   
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Figure 52.  Blind Rendezvous Performance 

 

Although the 1 m relative distance criterion, to the target estimate, was met, the 

relative distance to the target truth is the important measure.  Given a small target 

position error, the two distances would be very similar.  In this case, however, the error 

built up over the 71 minute simulation resulted in a 12 m relative distance to the truth 

when the controller believed rendezvous had been achieved. 

A further complication with this alternative CONOPS is the lack of robustness.  

Once perturbations are introduced, such as air drag, it fails to achieve rendezvous even to 
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the target estimate.  The simulation was run, including J2, for 200 minutes resulting in the 

performance shown in Figure 53.   
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Figure 53.  Blind Rendezvous Performance with J2 

 

In this case, the target position error becomes so large; there is no hope of closure.  The 

difference between the estimate and truth continuously increases during the simulation.  

Figure 54 shows how this error builds up to over 100 m after just 140 minutes. 
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Figure 54.  Position Error for Blind Rendezvous with J2 

 

Summary 

Front-end Systems Engineering led to a top-level system feasibility, but also 

exposed GN&C integration complexity.  Controller and estimator algorithms have been 

separately matured from previous work and shown to contain a fair amount of 

adaptability.  As an example, Gain-Scheduling was found to significantly improve upon 

earlier Linear Quadratic Regulator performance.  Difficulty arose, however, when the 

development of an integrated GN&C subsystem was attempted.  It proved to be outside 

the context of established algorithms and required additional effort to extend.
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter summarizes the feasibility analysis of a microsatellite rendezvous 

with non-cooperative targets and identifies the technical challenges in doing so.  The 

integration challenges encountered in the GN&C algorithm assimilation provide rich 

opportunity for future research activities.   

Conclusions of Research 

The results of this research underscore the difficulty in developing an integrated 

GN&C system for a non-cooperative rendezvous.  The competing demands of the 

controller and estimator components prove too much for simple algorithms to overcome.  

The suite of continuous nonlinear control, linearized dynamics, and non-linear 

measurement conditions need to be fully accounted for in the integrated solution.  The 

NLS estimator developed for this research, however, has no means to include the 

continuously changing measurements.  This causes error to build up in the target estimate 

between updates, greatly hindering the process.  Although a top-level system architecture 

was developed, the technical complexity involved requires more sophisticated methods to 

solve. 

Recommendations for Future Research 

As political economist Thomas Schelling has pointed out, “There is a tendency in 

our planning to confuse the unfamiliar with the improbable.  The contingency we have 

not considered looks strange; what looks strange is thought improbable; what is 
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improbable need not be considered seriously.”  Surprise is most often not a lack of 

warning, but the result of a tendency to dismiss as reckless what we consider improbable 

(Commission to Assess US National Security Space Management & Organization, 2001).  

Although the conclusion of this research points to a low level of feasibility, given the 

scope, it should not be considered unfamiliar or improbable.     

As future work, the control and estimation algorithms used need to be further 

tailored to incorporate all physical conditions involved in the rendezvous problem.  

Taking everything into account may reveal a feasible solution.  More development time is 

needed to mature the software. 

Although past research indicate an impulsive thrust solution does not work, even 

given perfect knowledge of the target, it seems additional study may reveal a viable 

product.  As it was very difficult to integrate a continuous thrust controller with an 

estimator in this work, the impulsive controller should be revisited.  Specifically, 

coupling a CW controller with a modified NLS filter could present interesting results.  

Optimal sequential processing with noise statistics assumed should be investigated. 

Once a technical solution is found, the systems engineering work should be 

expanded to include a more formal evaluation.  A full system architecture should first be 

developed followed by more rigorous evaluation techniques.  Executable models could be 

developed upon which to base a quantitative assessment of system feasibility.  A detailed 

GN&C subsystem feasibility study should be conducted to explore hardware/software 

integration challenges, followed by a full system study to look at subsystem integration 

issues. 
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Appendix A – Main LQR Code 

 
%============================================================== 
% 
%  MAIN LQR CODE 
% 
%  Allen Toso - 7 Feb 04 
% 
%  Orbital Rendezvous With a Non-Cooperative Target 
% 
%  Original code provided by Troy Tschirhart (4 Mar 03)  
%  Code modified to incorporate Estimator and focus on final 5 km approach 
% 
%============================================================== 
 
%============================================================== 
% 
%  This program uses the following function files which must be on the current path: 
% 
%  atmosphere.m     calculate atmospheric density at the given altitude 
%  CalcInit.m           calculate the initial conditions for the run 
%  Do_Plots             plot the results 
%  LQR_Rend          accomplish lqr rendezvous manuever 
%  propagate.m        propagator 
%  posvel.m         set up the differential equation for the propagator 
%  ijk2pqw.m        transform r,v from ijk frame to pqw frame 
%  pqw2ijk.m        transform r,v from pqw frame to ijk frame 
%  rtz2pqw.m        transform r,v from rtz frame to pqw frame 
%  rv2coe.m         calculate coe for the given r,v 
%  coe2rv.m         calculate r,v for the given coe 
%   
%============================================================== 
 
%============================================================== 
%  Clear Variables and Set Format Options 
%============================================================== 
 
clear 
format long g 
format compact 
 
%============================================================== 
%  Print a banner to separate results 
%  Start the timer (used at the end to determine how long the run took) 
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%============================================================== 
 
('==============================================================') 
 
tic 
 
%============================================================== 
%  Set Selectable Variable Values 
%============================================================== 
 
%--------------------------------------------------------------------------------------------------- 
%  The target's actual initial COEs 
%--------------------------------------------------------------------------------------------------- 
 
coe_tgt_act(1) = 6.772888912204840e+003;     % km                a 
coe_tgt_act(2) = 9.887713549825913e-004;     % dimensionless     e 
coe_tgt_act(3) = 0.79736386485827;            % radians         nu 
coe_tgt_act(4) = 0.90757990078380;            % radians         i 
coe_tgt_act(5) = 1.51843760980691;            % radians         cap_omega 
coe_tgt_act(6) = 5.59054044657763;            % radians         small_omega 
coe_tgt_act(7) = 0.0;                          % seconds        time since perigee 
 
%--------------------------------------------------------------------------------------------------- 
%  Set initial micro offset from the target 
%--------------------------------------------------------------------------------------------------- 
 
delr = 0;                                    % kilometers (delta_r) 
dist = -5;                                   % kilometers arclength (ro*delta_theta) 
delz = 0;                                    % kilometers (delta_z) 
 
%--------------------------------------------------------------------------------------------------- 
%  Set the acceptable relative distance and velocity for a successful rendezvous  
%--------------------------------------------------------------------------------------------------- 
 
catchdis = 0.001;     % kilometers (1m) - Phase 2 (O/L), Phase 3 (C/L) 
catchvel = 0.00001;   % kilometers/second (1cm/s) - Phase 2 
 
timestep = 1000;      % used only to determine delta_thrust in LQR, based on filter                       
                                    % (seconds)  
 
%--------------------------------------------------------------------------------------------------- 
%  Specify values for the state weighting matrix, Q  
%  and the control weighting matrix, R 
%  Note:  Q_mag increases => faster movement from initial to desired states 
%  R_mag increases => lower control usage 
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%--------------------------------------------------------------------------------------------------- 
 
Q_mag = 1; 
R_fin = 1e13;                    
 
%--------------------------------------------------------------------------------------------------- 
%  Set perturbation (J2) options (Note: "1" = option selected; "0" = option not selected) 
%--------------------------------------------------------------------------------------------------- 
 
pert =0; 
 
%--------------------------------------------------------------------------------------------------- 
%  Set drag options and values (Note: "1" = option selected; "0" = option not selected) 
%--------------------------------------------------------------------------------------------------- 
 
dragtgt = 0; 
cd_tgt = 2.2;                                       % Drag coefficient of the target 
a_tgt = 3.5*1.2/(1000^2);                          % Area of the target (km^2) 
m_tgt = 725;                                        % Mass of the target 
cdamtgt = dragtgt * (cd_tgt * a_tgt) / m_tgt; % Calculate the target's cdam value 
 
%--------------------------------------------------------------------------------------------------- 
 
dragmic = 0;  
cd_mic = 3;                                          % Drag coefficient of the micro 
a_mic = 1.5/(1000^2);                               % Area of the micro (km^2) 
m_mic = 100;                                        % Mass of the micro 
cdammic = dragmic * (cd_mic * a_mic) / m_mic;     % Calculate the micro's cdam value 
 
%--------------------------------------------------------------------------------------------------- 
%  Set plot options (Note: "1" = option selected; "0" = option not selected) 
%--------------------------------------------------------------------------------------------------- 
 
prdijk = 0;     % Plot relative distance in the inertial (ijk) frame 
prdrtz = 1;     % Plot relative distance in the relative (rtz) frame 
prdroto = 1;   % Plot relative distance in the relative plane (delta_r, ro*delta_theta) 
 
%==============================================================  
%  Initialize variable values  
%==============================================================  
 
delta_v_accum = 0;          % initialize delta-V to zero 
 
%==============================================================  
%  Calculate Initial Values  
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%  1.  Target's initial position and velocity 
%  2.  Micro's initial position and velocity 
%==============================================================  
 
CalcInit 
 
%==============================================================  
%  Accomplish Linear Quadratic Regulator Rendezvous 
%==============================================================  
 
LQR_Rend 
 
%==============================================================  
%  Print Output Values        
%==============================================================  
 
delta_r = delr 
ro_delta_theta = dist 
delta_z = delz 
 
pert 
dragtgt 
dragmic 
pt 
timestep 
Q_mag 
R_mag 
delta_v_accum 
final_vel = vel_now 
final_dist = dist_now 
 
%==============================================================  
%  Draw Desired Plots    
%==============================================================  
 
Do_Plots 
 
%==============================================================  
%  End of Program 
%==============================================================  
 
run_time = toc 



 

93 

Appendix B – Linear Estimator Code 

 
%============================================================== 
% 
%  STAND ALONE LQE_LSIM ESTIMATOR (Linear Estimator) 
% 
%  Allen Toso - 2 Dec 03 
%  
%  Orbital Rendezvous With a Non-Cooperative Target 
%  Uses Range, Az, El to obtain an estimate for the target state 
%   
%  [L, P, E] = LQE(A,G,C,Q,R) 
%  
%  A = Plant (System) 
%  G = something small 
%  C = Observation Geometry Matrix - Range Vector Range, Az, El) 
%  Q = Strength of Process Noise, set to zero 
%  R = Strength of Measurement Noise 
%   
% [y,x] = LSIM(A,B,C,D,u,t,x_tgt') 
%  
% [y_hat, x_hat] = LSIM(A_ob,L,C,D,y,t,x_tgt_hat') 
%  
%============================================================== 
 
% Initial input % 
clear 
format long g 
format compact 
 
x_tgt =     [0  1  0  0  0  0]                               % detla r only 
 
r_tgt_rel(1) = x_tgt(2); 
r_tgt_rel(2) = x_tgt(4); 
r_tgt_rel(3) = x_tgt(6) 
 
v_tgt_rel(1) = x_tgt(1);  
v_tgt_rel(2) = x_tgt(3); 
v_tgt_rel(3) = x_tgt(5); 
 
 
x_tgt_hat = x_tgt; 
 
pos_error = .70710678;                                  % amounts to 1 km position error 
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r_tgt_hat_rel(1) = x_tgt_hat(2) - pos_error; 
r_tgt_hat_rel(2) = x_tgt_hat(4) - pos_error; 
r_tgt_hat_rel(3) = x_tgt_hat(6) 
 
v_tgt_hat_rel(1) = x_tgt_hat(1);  
v_tgt_hat_rel(2) = x_tgt_hat(3); 
v_tgt_hat_rel(3) = x_tgt_hat(5); 
 
x_tgt_hat(2) = r_tgt_hat_rel(1); 
x_tgt_hat(4) = r_tgt_hat_rel(2); 
x_tgt_hat(6) = r_tgt_hat_rel(3) 
 
 
%==============================================================  
% Calc A 
%============================================================== 
 
 
U = 398601;         % km^3/sec^2 
 
coe_tgt_act(1) = 6.772888912204840e+003; % a, km 
coe_ref = coe_tgt_act;                                     % Start with target's initial COEs 
 
n=sqrt(U/coe_ref(1)^3); 
 
A=[ 0    3*n^2  2*n  0  0   0; 
    1    0      0    0  0   0; 
   -2*n  0      0    0  0   0; 
    0    0      1    0  0   0; 
    0    0      0    0  0  -n^2; 
    0    0      0    0  1   0]; 
 
 
%==============================================================  
% Calc C 
%==============================================================  
 
% Calc the norm of target state, x_tgt, in rtz, in km 
 
% Relative position vector (3 x 1) (range) in rtz coordinates 
% to the target satellite.  
range_vector = r_tgt_hat_rel; 
 
% Magnitude of the range vector in rtz, in km 
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range = norm(range_vector); 
 
% C = Observation Geometry Matrix - Range Vector Range, Az, El)  
% Initialize C to zeros first then build up needed components 
C = zeros(3,6); 
 
% C(1,1), C(2,1), C(3,1) = 0 
 
% C(1,2), C(2,2), C(3,2): 
C(1,2) = range_vector(1) / range; 
C(2,2) = (-range_vector(2)/range_vector(1)^2) / (1 + 
(range_vector(2)/range_vector(1))^2); 
 
C3_2_top = (-range_vector(1)*range_vector(3)) / ((range_vector(1)^2 + 
range_vector(2)^2)^(3/2)); 
C3_2_bottom = 1 + (range_vector(3)^2) / (range_vector(1)^2 + range_vector(2)^2); 
C(3,2) = C3_2_top / C3_2_bottom; 
 
% C(1,3), C(2,3), C(3,3) = 0 
 
% C(1,4), C(2,4), C(3,4): 
C(1,4) = range_vector(2) / range; 
C(2,4) = (1/range_vector(1)) / (1 + (range_vector(2)/range_vector(1))^2); 
 
C3_4_top = (-range_vector(2)*range_vector(3)) / ((range_vector(1)^2 + 
range_vector(2)^2)^(3/2)); 
C3_4_bottom = 1 + (range_vector(3)^2) / (range_vector(1)^2 + range_vector(2)^2); 
C(3,4) = C3_4_top / C3_4_bottom; 
 
% C(1,5), C(2,5), C(3,5) = 0 
 
% C(1,6), C(2,6), C(3,6): 
C(1,6) = range_vector(3) / range; 
C(2,6) = 0; 
 
C3_6_top = 1 / ((range_vector(1)^2 + range_vector(2)^2)^(1/2)); 
C3_6_bottom = 1 + (range_vector(3)^2) / (range_vector(1)^2 + range_vector(2)^2); 
C(3,6) = C3_6_top / C3_6_bottom; 
 
%==============================================================  
% Calc L, estimator gain matrix 
%==============================================================  
 
%  [L, P, E] = LQE(A,G,C,Q,R) 
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%  A = Plant (System)  
 
%  G = something small 
 
G = [1 1 1;     
     1 1 1; 
     1 1 1; 
     1 1 1; 
     1 1 1; 
     1 1 1]; 
 
% Form Q, the process noise matrix nonzero - two orders of magnitude smaller than R, 
allow R to dominate    
% Q(1,1) = 0.0002^2; - Reference: Foster's obser.m 
 
Q = zeros(3,3); 
 
Q(1,1) = 0.00000004; 
Q(2,2) = 0.00000004; 
Q(3,3) = 0.00000004; 
 
% R = Strength of Measurement Noise 
% Form R, the instrumental covariance matrix 
% R(1,1) = 0.002^2;     Instrumentation sigma squared ( 2 meters = 0.002 km) 
 
R = zeros(2,2); 
 
R(1,1) = 0.000004; 
R(2,2) = 0.000004; 
R(3,3) = 0.000004;  
 
 
[L,P,E] = lqe(A,G,C,Q,R); 
 
 
%==============================================================  
% Call LSIM 
%==============================================================  
 
B = [ 0; 
      0; 
      0; 
      0; 
      0; 
      0]; 



 

97 

   
D = 0; 
 
A_ob = A-L*C; 
 
t = [0:1:10000]';     
 
u = 0*t; 
 
[y,x] = lsim(A,B,C,D,u,t,x_tgt'); 
 
[y_hat, x_hat] = lsim(A_ob,L,C,D,y,t,x_tgt_hat'); 
 
 
%============================================================== 
% Plot results 
%============================================================== 
 
% Parse x 
r_tgt_plot(:,1) = x(:,2); 
r_tgt_plot(:,2) = x(:,4); 
r_tgt_plot(:,3) = x(:,6); 
 
v_tgt_plot(:,1) = x(:,1);  
v_tgt_plot(:,2) = x(:,3); 
v_tgt_plot(:,3) = x(:,5); 
 
% Parse x_hat 
r_tgt_hat_plot(:,1) = x_hat(:,2); 
r_tgt_hat_plot(:,2) = x_hat(:,4); 
r_tgt_hat_plot(:,3) = x_hat(:,6); 
 
v_tgt_hat_plot(:,1) = x_hat(:,1);  
v_tgt_hat_plot(:,2) = x_hat(:,3); 
v_tgt_hat_plot(:,3) = x_hat(:,5); 
 
figure(1); clf; 
plot(t,r_tgt_hat_plot,t,r_tgt_plot,'--'); grid on; ylabel('Target Position Error (km)'); 
xlabel('Time (minutes)'); 
 
figure(2); clf; 
plot(t,v_tgt_hat_plot,t,v_tgt_plot,'--'); grid on; ylabel('Target Velocity Error (km)'); 
xlabel('Time (minutes)'); 
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%============================================================== 
% Check target position and velocity errors 
%============================================================== 
 
x_tgt_next = x(10000,:) 
 
r_tgt_rel(1) = x_tgt_next(2); 
r_tgt_rel(2) = x_tgt_next(4); 
r_tgt_rel(3) = x_tgt_next(6) 
 
v_tgt_rel(1) = x_tgt_next(1); 
v_tgt_rel(2) = x_tgt_next(3); 
v_tgt_rel(3) = x_tgt_next(5) 
 
 
x_tgt_hat_next = x_hat(10000,:) 
 
r_tgt_hat_rel(1) = x_tgt_hat_next(2); 
r_tgt_hat_rel(2) = x_tgt_hat_next(4); 
r_tgt_hat_rel(3) = x_tgt_hat_next(6) 
 
v_tgt_hat_rel(1) = x_tgt_hat_next(1); 
v_tgt_hat_rel(2) = x_tgt_hat_next(3); 
v_tgt_hat_rel(3) = x_tgt_hat_next(5) 
 
 
tgt_posn_error = r_tgt_rel' - r_tgt_hat_rel' 
 
tgt_posn_error = norm(tgt_posn_error) 
 
 
tgt_vel_error = v_tgt_rel' - v_tgt_hat_rel' 
 
tgt_vel_error = norm(tgt_vel_error) 

 

%============================================================== 
% End of Program 
%============================================================== 
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